Formaldehyde (FA) is a human carcinogen used as formalin in hospital laboratories. We evaluated its association with human chromosomal aberrations (CAs) and the risk/protective role played by several genetic polymorphisms in this relationship, on a cohort of 57 exposed pathologists vs 48 controls. All subjects were assessed for CAs on peripheral blood lymphocytes and genotyped for the most common cancer-associated gene polymorphisms which could be related with the genotoxic outcome: CYP1A1 exon 7 (A>G), CYP1A1*2A (T>C), CYP2C19*2 (G>A), GSTT1 (Positive/Null), GSTM1 (Positive/null), GSTP1 (A>G), XRCC1 (G399A), XRCC1 (C194T), XRCC1 (A280G), XPD (A751C), XPC exon 15 (A939C), XPC exon 9 (C499T), TNFα − 308 (G>A), IL10 − 1082 (G>A), IL10 − 819 (C>T) and IL6 − 174 (G>C). Air-FA concentration was assessed through personal samplers. The comparison between pathologists and controls showed a significantly higher CAs frequency in pathologists. Significant positive correlations were found between CAs frequency and air-FA concentration while significant associations were found between variation in CAs frequency and the mutated allele for CYP1A1 exon 7 (A>G), CYP2C19*2 (G>A), GSTT1-positive, GSTM1-positive and XRCC1 (G399A). Our study confirms the role of FA as genotoxicity inductor, even in workers chronically exposed to low air-FA levels and reveals the role played by some genetic polymorphisms in this association, highlighting the importance of individual susceptibility biomarkers assessment in occupational health studies.

The role of phase I, phase II, and DNA‑repair gene polymorphisms in the damage induced by formaldehyde in pathologists

Federica Ghelli
First
;
Enrico Cocchi;Martina Buglisi;Giulia Squillacioti;Valeria Bellisario;Roberto Bono
;
Alfredo Santovito
Last
2021

Abstract

Formaldehyde (FA) is a human carcinogen used as formalin in hospital laboratories. We evaluated its association with human chromosomal aberrations (CAs) and the risk/protective role played by several genetic polymorphisms in this relationship, on a cohort of 57 exposed pathologists vs 48 controls. All subjects were assessed for CAs on peripheral blood lymphocytes and genotyped for the most common cancer-associated gene polymorphisms which could be related with the genotoxic outcome: CYP1A1 exon 7 (A>G), CYP1A1*2A (T>C), CYP2C19*2 (G>A), GSTT1 (Positive/Null), GSTM1 (Positive/null), GSTP1 (A>G), XRCC1 (G399A), XRCC1 (C194T), XRCC1 (A280G), XPD (A751C), XPC exon 15 (A939C), XPC exon 9 (C499T), TNFα − 308 (G>A), IL10 − 1082 (G>A), IL10 − 819 (C>T) and IL6 − 174 (G>C). Air-FA concentration was assessed through personal samplers. The comparison between pathologists and controls showed a significantly higher CAs frequency in pathologists. Significant positive correlations were found between CAs frequency and air-FA concentration while significant associations were found between variation in CAs frequency and the mutated allele for CYP1A1 exon 7 (A>G), CYP2C19*2 (G>A), GSTT1-positive, GSTM1-positive and XRCC1 (G399A). Our study confirms the role of FA as genotoxicity inductor, even in workers chronically exposed to low air-FA levels and reveals the role played by some genetic polymorphisms in this association, highlighting the importance of individual susceptibility biomarkers assessment in occupational health studies.
11
1
1
8
https://www.nature.com/articles/s41598-021-89833-w
Federica Ghelli, Enrico Cocchi, Martina Buglisi, Giulia Squillacioti, Valeria Bellisario, Roberto Bono, Alfredo Santovito
File in questo prodotto:
File Dimensione Formato  
Scientific Report 2021 Bono.pdf

Accesso aperto

Descrizione: articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1789038
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact