Characterization of trace elemental composition in PM10 samples monitored in the cities of Piedmont Region (Italy)

This is the author’s manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/129815 since 2016-01-19T14:25:04Z

Publisher:
Società Chimica Italiana - Divisione Chimica Analitica

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
CHARACTERIZATION OF TRACE ELEMENTAL COMPOSITION IN PM10 SAMPLES MONITORED IN THE CITIES OF PIEDMONT REGION (ITALY)

1A Giacomino, 2M. Malandrino, 3O. Abollino, 4I. Zelano.

1Dipartimento di Scienze e Tecnologie del Farmaco, Università di Torino
2Dipartimento di Chimica, Università di Torino

Atmospheric pollution resulting from airborne particulate matter, especially PM10 fraction, continues to be a major problem despite remarkable improvements having been made in terms of air quality over the last decades. Nowadays it has become very important to know the elemental composition and the sources of the airborne particulate matter in order to identify possible emergency situations in the environment resulting from bad air quality and consequently take action and implement recovery plans specific for the problems encountered (1,2,3).

In this study we determined the concentration of the following elements: As, Ba, Cd, Co, Cr, Cu, Fe, Hg, K, Mn, Mo, Ni, Pb, Pt, Se, Si, Ti, V, Zn e Zr in airborne PM10 samples collected in Piedmont region: in particular, in two sampling sites in Turin (one located in the historical center of the town, the other on the northern outskirts of the town) and one in Biella. The samples were collected in different months in 2007. The analytes concentrations were determined using ICP-OES and ICP-MS.

Before the analysis of the raw samples, an optimization of the procedure was made analyzing two certified materials, BCR 176 and NIST SRM 1649a.

The application of multivariate chemometric techniques (Principal Component Analysis and Hierarchical Cluster Analysis) to the experimental results allowed us to identify correlations among the investigated elements and to reveal similarities and differences between sampling sites, highlighting the existence of the main emitting sources as vehicular traffic, fossil fuel combustion and soil dust.


108