Observation of Time-Reversal Violation in the B^0 Meson System

(The BABAR Collaboration)

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3INFN Sezione di Bari, I-70126 Bari, Italy
4Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
5University of Bergen, Institute of Physics, N-5007 Bergen, Norway
6Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
7University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
10Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
11University of California at Riverside, Riverside, California 92521, USA
12University of California at Santa Barbara, Santa Barbara, California 93106, USA
13University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14California Institute of Technology, Pasadena, California 91125, USA
15University of Cincinnati, Cincinnati, Ohio 45221, USA
16University of Colorado, Boulder, Colorado 80309, USA
17Colorado State University, Fort Collins, Colorado 80523, USA
18Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
19Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
20Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
21University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
22INFN Sezione di Ferrara, I-44100 Ferrara, Italy
23INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
24INFN Sezione di Genova, I-16146 Genova, Italy
25University of Geneva, Genève, Switzerland
26Harvard University, Cambridge, Massachusetts 02138, USA
27Harvey Mudd College, Claremont, California 91711, USA
28Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
30Imperial College London, London, SW7 2AZ, United Kingdom
31University of Iowa, Iowa City, Iowa 52242, USA
32Iowa State University, Ames, Iowa 50011-3160, USA
33Johns Hopkins University, Baltimore, Maryland 21218, USA
34Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France
35Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36University of Liverpool, Liverpool L69 7ZE, United Kingdom
37Queen Mary, University of London, London, E1 4NS, United Kingdom
38University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39University of Louisville, Louisville, Kentucky 40292, USA
40Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
41University of Maryland, College Park, Maryland 20742, USA
42University of Massachusetts, Amherst, Massachusetts 01003, USA
43Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
44McGill University, Montréal, Québec, Canada H3A 2T8
45INFN Sezione di Milano, I-20133 Milano, Italy
46Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
47University of Mississippi, University, Mississippi 38677, USA
48Université de Montréal, Physique des Particules, Montréal, Quebec, Canada H3C 3J7
49INFN Sezione di Napoli, I-80126 Napoli, Italy
Although CP violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states (B^0 or B̄^0), and J/ψK^0_S or ccK^0_S final states (referred to as B^+ or B^−), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, B^0 → B^− and B^− → B^0, as a function of the time difference between the two B decays. Using 468 × 10^6 B̄B pairs produced in Y(4S) decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding ∆S_T = −1.37 ± 0.14(stat) ± 0.06(syst) and ∆S'_T = 1.17 ± 0.18(stat) ± 0.11(syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.

The observations of CP-symmetry breaking, first in neutral K decays [1] and more recently in B mesons [2,3], are consistent with the standard model (SM) mechanism of the three-family Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix being the dominant source of CP violation [4]. Local Lorentz invariant quantum field theories imply CPT invariance [5], in accordance with all experimental evidence [6,7]. Hence, it is expected that the CP-violating weak interaction also violates time-reversal invariance. To date, the only evidence related to T violation has been found in the neutral K system, where a difference between the probabilities of K^0 → K^0 and K^0 → K^0 transitions for a given elapsed time has been measured [9]. This flavor

DOI: 10.1103/PhysRevLett.109.211801

PACS numbers: 13.25.Hw, 11.30.Er, 14.40.Nd
mixing asymmetry is both CP and T violating (the two transformations lead to the same observation), independent of time, and requires a nonzero decay width difference \(\Delta\Gamma_K\) between the neutral K mass eigenstates to be observed \cite{10-12}. The dependence with \(\Delta\Gamma_K\) has aroused controversy in the interpretation of this observable \cite{7,11-13}. In the neutral \(B\) and \(B_s\) systems, where \(\Delta\Gamma_d\) and \(\Delta\Gamma_s\) are negligible and significantly smaller, respectively, the flavor mixing asymmetry is much more difficult to detect \cite{14}. Experiments that could provide direct evidence supporting \(T\) noninvariance, without using an observation which also violates CP, involve either nonvanishing expectation values of \(T\)-odd observables, or the exchange of initial and final states, which are not CP conjugates to each other, in the time evolution for transition processes. Among the former, there exist upper limits for electric dipole moments of the neutron and the electron \cite{15}. The latter, requiring neutrinos or unstable particles, are particularly difficult to implement.

In this Letter, we report the direct observation of \(T\) violation in the \(B\) meson system, through the exchange of initial and final states in transitions that can only be connected by a \(T\)-symmetry transformation. The method is described in Ref. \cite{16}, based on the concepts proposed in Ref. \cite{17} and further discussed in Refs. \cite{12,18,19}. We use a data sample of 426 fb\(^{-1}\) of integrated luminosity at the \(Y(4S)\) resonance, corresponding to 468 \times 10\(^8\) \(B\bar{B}\) pairs, and 45 fb\(^{-1}\) at a center-of-mass (c.m.) energy 40 MeV below the \(Y(4S)\), recorded by the \(BABAR\) detector \cite{20} at the PEP-II asymmetric-energy \(e^+e^-\) collider at SLAC. The experimental analysis exploits identical reconstruction algorithms, selection criteria, calibration techniques, and \(B\) meson samples to our most recent time-dependent CP asymmetry measurement in \(B\to c\bar{c}K^{(*)}\) decays \cite{21}, with the exception of \(\eta, K_S^0\) and \(J/\psi K^{*0}\) final states. The “flavor tagging” is combined here, for the first time, with the “CP tagging” \cite{17}, as required for the construction of \(T\)-transformed processes. Whereas the descriptions of the sample composition and time-dependent backgrounds are the same as described in Ref. \cite{21}, the signal giving access to the \(T\)-violating parameters needs a different data treatment. This echoes the fundamental differences between observables for \(T\) and CP symmetry breaking. The procedure to determine the \(T\)-violating parameters and their significance is thus novel \cite{16}.

In the decay of the \(Y(4S)\), the two \(B\) mesons are in an entangled, antisymmetric state, as required by angular momentum conservation for a \(P\) wave particle system. This two-body state is usually written in terms of flavor eigenstates, such as \(B^0\) and \(\bar{B}^0\), but can be expressed in terms of any linear combinations of \(B^0\) and \(\bar{B}^0\), such as the \(B_+\) and \(B_-\) states introduced in Ref. \cite{16}. They are defined as the neutral \(B\) states filtered by the decay to \(CP\) eigenstates \(J/\psi K^0\) (CP even) and \(J/\psi K^0\bar{S}\), with \(K^0\to\pi\pi\) (CP odd), respectively. The \(B_+\) and \(B_-\) states are orthogonal to each other when there is only one weak phase involved in the \(B\) decay amplitude, as it occurs in \(B\) decays to \(J/\psi K^0\) final states \cite{22}, and CP violation in neutral kaons is neglected.

We select events in which one \(B\) candidate is reconstructed in a \(B_+\) or \(B_-\) state, and the flavor of the other \(B\) is identified, referred to as flavor identification (ID). We generically denote reconstructed final states that identify the flavor of the \(B\) as \(\ell^+X\) for \(B^0\) and \(\ell^-X\) for \(\bar{B}^0\). The notation \((f_1, f_2)\) is used to indicate the flavor or \(CP\) final states that are reconstructed at corresponding times \(t_1\) and \(t_2\), where \(t_2 > t_1\), i.e., \(B_1\to f_1\) is the first decay in the event and \(B_2\to f_2\) is the second decay. For later use in Eq. (1), we define \(\Delta T = t_2 - t_1 > 0\). Once the \(B_1\) state is filtered at time \(t_1\), the living partner \(B_2\) is prepared (“tagged”) by entanglement as its orthogonal state. The notation \(B_2(t_1)\to B_2(t_2)\) describes the transition of the \(B\) which decays at \(t_2\), having tagged its state at \(t_1\). For example, an event reconstructed in the time-ordered final states \((\ell^+X, J/\psi K^0)\) identifies the transition \(\bar{B}^0\to B_+\) for the second \(B\) to decay. We compare the rate for this transition to its \(T\)-reversed \(B_-\to B^0\) (exchange of initial and final states) by reconstructing the final states \((J/\psi K^0, \ell^-X)\).

Any difference in these two rates is evidence for \(T\)-symmetry violation. There are three other independent comparisons that can be made between \(B_+\to B^0\) \((J/\psi K^0, \ell^+X)\), \(B^0\to B_+\) \((\ell^+X, J/\psi K^0)\), and \(B_\to B_-\) \((J/\psi K^0, \ell^-X)\) and \(B^0\to B_-\) \((\ell^-X, J/\psi K^0)\), respectively. Similarly, four different \(CP\) \((CPT)\) comparisons can be made, e.g., between the \(B^0\to B_+\) transition and its \(CP\) \((CPT)\) transformed \(B^0\to B_-\) \((B_\to B^0)\) \cite{16}.

Assuming \(\Delta\Gamma_d = 0\), each of the eight transitions has a general, time-dependent decay rate \(g_{\alpha\beta}\) given by

\[e^{-\Gamma_d^\alpha}\left[1 + S_{\alpha\beta}^\beta \sin(\Delta m_d \Delta T) + C_{\alpha\beta} \cos(\Delta m_d \Delta T)\right],\]

where indices \(\alpha = \ell^+, \ell^-\) and \(\beta = K_S^0, K_S^0\) stand for \(\ell^+X\), \(\ell^-X\) and \(c\bar{c}K_S^0, J/\psi K_S^0\) final states, respectively, and the symbol + or − indicates whether the decay to the flavor final state \(\alpha\) occurs before or after the decay to the \(CP\) final state \(\beta\). Here, \(\Gamma_d\) is the average decay width, \(\Delta m_d\) is the mass difference between the neutral \(B\) mass eigenstates, and \(C_{\alpha\beta}^\beta\) and \(S_{\alpha\beta}\) are model independent coefficients. The sine term, expected to be large in the SM, results from the interference between direct decay of the neutral \(B\) to the \(J/\psi K^0\) final state and decay after \(B^0\to B^0\) oscillation, while the cosine term arises from the interference between decay amplitudes with different weak and strong phases, and is expected to be negligible \cite{22}. \(T\) violation would manifest itself through differences between the \(S_{\alpha\beta}\) or \(C_{\alpha\beta}\) values for \(T\)-conjugated processes, for example, between \(S_{\ell^-K_S^0}\) and \(S_{\ell^-K_S^0}\).
In addition to $J/\psi/K^0_L$, B^- states are reconstructed through the \(\psi(2S)K^0_L \) and $X_{c1}K^0_L$ final states (denoted generically as $c\bar{c}K^0_L$), with J/ψ, $\psi(2S) \rightarrow e^+e^-$, $\mu^+\mu^-$, $\psi(2S) \rightarrow J/\psi/\pi^+\pi^-$, $X_{c1} \rightarrow J/\psi\gamma$, and $K^0 \rightarrow \pi^+\pi^-$, $\pi^0\eta$ (the latter only for $J/\psi K^0_L$). B_s states are identified through $J/\psi K^0_L$. The $J/\psi K^0_L$ candidates are characterized by the difference ΔE between the reconstructed energy of the B and the beam energy in the e^+e^- c.m. frame, E_{beam}, while for the $c\bar{c}K^0_L$ modes we use the beam-energy-substituted invariant mass $m_{\text{ES}} = \sqrt{(E_{\text{beam}})^2 - (p_B^*)^2}$, where p_B^* is the B momentum in the c.m. frame.

The flavor ID of the other neutral B meson in the event, not associated with the reconstructed B_s or B^-, is made on the basis of the charges of prompt leptons, kaons, pions from D^* mesons, and high-momentum charged particles. These flavor ID inputs are combined using a neural network (NN), trained with Monte Carlo (MC) simulated data.

The output of the NN is then divided into six hierarchical, mutually exclusive flavor categories of increasing misidentification (misID) probability w. Events for which the NN output indicates very low discriminating power are excluded from further analysis. We determine the signed difference of proper time $\Delta t = t_B - t_a$ between the two B decays from the measured separation of the decay vertices along the collision axis. Events are accepted if the reconstructed $|\Delta t|$ and its estimated uncertainty, $\sigma_{\Delta t}$, are lower than 20 and 2.5 ps, respectively. The performances of the flavor ID and Δt reconstruction algorithms are evaluated by using a large sample of flavor-specific neutral B decays to $D^{(*)-}[\pi^+, \rho(770)^+], a_1(1260)^+$ and $J/\psi K^{*0}(\rightarrow K^+\pi^-)$ final states (referred to as B_{flav} sample). The Δt resolution function is the same as in Ref. [21] except that all Gaussian offsets and widths are modeled to be proportional to $\sigma_{\Delta t}$.

The composition of the final sample is determined through fits to the m_{ES} and ΔE distributions, using parametric forms and distributions extracted from MC simulation and dilepton mass sidebands in data to describe the signal and background components. Figure 1 shows the m_{ES} and ΔE data distributions for events that satisfy the flavor ID and vertexing requirements, overlaid with the fit projections. The final sample contains 7796 $c\bar{c}K^0_L$ events, with purities in the signal region ($5.27 < m_{\text{ES}} < 5.29$ GeV/c2) ranging between 87% and 96%, and 5813 $J/\psi K^0_L$ events, with a purity of 56% in the $|\Delta E| < 10$ MeV region.

We perform a simultaneous, unbinned maximum likelihood fit to the Δt distributions for flavor identified $c\bar{c}K^0_L$ and $J/\psi K^0_L$ events, split by flavor category. The signal probability density function (PDF) is [16]

$$\mathcal{H}_{a,\beta}(\Delta t) \propto g_{a,\beta}^{+}(\Delta t_{\text{true}})H(\Delta t_{\text{true}}) \Theta(\delta t; \sigma_{\Delta t}) + g_{a,\beta}^{-}(\Delta t_{\text{true}})H(-\Delta t_{\text{true}}) \Theta(-\delta t; \sigma_{\Delta t}),$$

where Δt_{true} is the signed difference of proper time between the two B decays in the limit of perfect Δt reconstruction, H is the Heaviside step function, \(R(\delta t; \sigma_{\Delta t}) \) with $\delta t = \Delta t - \Delta t_{\text{true}}$ is the resolution function, and $g_{a,\beta}^{+}$ are given by Eq. (1). Note that Δt_{true} is equivalent to $\Delta \tau (-\Delta \tau)$ when a true flavor (CP) tag occurs. Because of the convolution with the resolution function, the distribution for $\Delta t > 0$ contains predominantly true flavor-tagged events, with contribution from true CP-tagged events at low Δt, and conversely for $\Delta t < 0$. Mistakes in the flavor ID algorithm mix correct and incorrect flavor assignments, and dilute the T-violating asymmetries by a factor of approximately (1–2)w. Backgrounds are accounted for by adding terms to Eq. (2) [21]. Events are assigned signal and background probabilities based on the m_{ES} or ΔE distributions, for $c\bar{c}K^0_L$ or $J/\psi K^0_L$ events, respectively.

A total of 27 parameters are varied in the likelihood fit: eight pairs of $(S_{a,\beta}^\pm, C_{a,\beta}^\pm)$ coefficients for the signal, and 11 parameters describing possible CP and T violation in the background. All remaining signal and background parameters are fixed to values taken from the B_{flav} sample, J/ψ-candidate sidebands in $J/\psi K^0_L$, world averages for $\Gamma_{a,\beta}$ and $\Delta m_{a,\beta}$ [8], or MC simulation [21]. From the 16 signal coefficients [23], we construct six pairs of independent asymmetry parameters $(\Delta S_T, \Delta C_T)$, $(\Delta S_{CP}, \Delta C_{CP})$, and $(\Delta S_{T}^{\text{CPT}}, \Delta C_{T}^{\text{CPT}})$, as shown in Table I. The T-asymmetry parameters have the advantage that T-symmetry breaking would directly manifest itself through any nonzero value of ΔS_T or ΔC_T, or any difference between ΔS_{CP} and $\Delta S_{T}^{\text{CPT}}$, or between ΔC_{CP} and $\Delta C_{T}^{\text{CPT}}$ (analogously for CP- or CPT-symmetry breaking). The measured values for the asymmetry parameters are reported in Table I. There is another 2 times three pairs of T-, CP-, and CPT-asymmetry parameters, but they are not independent and can be derived from Table I or Ref. [23].

FIG. 1 (color online). Distributions of (a) m_{ES} and (b) ΔE for the neutral B decays reconstructed in the $c\bar{c}K^0_L$ and $J/\psi K^0_L$ final states, respectively, after flavor ID and vertexing requirements. In each plot, the shaded region is the estimated background contribution. The two samples of events are identical to those used in our most recent CP-violation study [21], but excluding ηK^0_L and $J/\psi K^{*0}(\rightarrow K^0\eta)$ final states.
We build time-dependent asymmetries \(A_T(\Delta t) \) to visually demonstrate the \(T \)-violating effect. For transition \(B^0 \to B^- \),

\[
A_T(\Delta t) = \frac{\mathcal{H}^-_{C, K^0}(\Delta t) - \mathcal{H}^+_{C, K^0}(\Delta t)}{\mathcal{H}^-_{C, K^0}(\Delta t) + \mathcal{H}^+_{C, K^0}(\Delta t)},
\]

where \(\mathcal{H}^-_{a, \beta}(\Delta t) = \mathcal{H}^-_{a, \beta}(\pm \Delta t) \theta(\Delta t) \). With this construction, \(A_T(\Delta t) \) is defined only for positive \(\Delta t \) values. Neglecting reconstruction effects, \(A_T(\Delta t) = \frac{\Delta S_{\beta}}{\sqrt{\Delta S_{\beta}^2 + \Delta C_T^2}} \sin(\Delta m_d \Delta t) + \frac{\Delta C_T}{\sqrt{\Delta S_{\beta}^2 + \Delta C_T^2}} \cos(\Delta m_d \Delta t) \). We introduce the other three \(T \)-violating asymmetries similarly. Figure 2 shows the four observed asymmetries, overlaid with the projection of the best fit results to the \(\Delta t \) distributions with and without the eight \(T \)-invariance restrictions: \(\Delta S_T = \Delta S_T^0 = 0 \), \(\Delta S_{CP} = \Delta S_{CP}^0 \), and \(\Delta C_T = \Delta C_{T, CP}^0 \) [23].

Using large samples of MC simulated data, we determine that the asymmetry parameters are unbiassed and have Gaussian errors. Splitting the data by flavor category or data-taking period give consistent results. Fitting a single pair of \((S, C) \) coefficients, reversing the sign of \(S \) under \(\Delta t \to -\Delta t \), or \(B^+ \leftrightarrow B^- \) or \(B^0 \leftrightarrow \bar{B}^0 \) exchanges, and the sign of \(C \) under \(B^0 \leftrightarrow \bar{B}^0 \) exchange, we obtain identical results to those obtained in Ref. [21]. Performing the analysis with \(B \) decays to \(c \bar{c} K^{-} \) and \(J/\psi K^{*-} \) final states instead of the signal \(c \bar{c} K^0 \) and \(J/\psi K^0 \), respectively, we find that all the asymmetry parameters are consistent with zero.

In evaluating systematic uncertainties in the asymmetry parameters, we follow the same procedure as in Ref. [21], with small changes [23]. We considered the statistical uncertainties on the flavor misID probabilities, \(\Delta t \) resolution function, and \(m_{ES} \) parameters. Differences in the misID probabilities and \(\Delta t \) resolution function between \(B_{\text{HAD}} \) and \(CP \) final states, uncertainties due to assumptions in the resolution for signal and background components, compositions of the signal and backgrounds, the \(m_{ES} \) and \(\Delta E \) PDFs, and the branching fractions for the backgrounds and their \(CP \) properties, have also been accounted for. We also assign a systematic uncertainty corresponding to any deviation of the fit for MC simulated asymmetry parameters from their generated MC values, taking the largest between the deviation and its statistical uncertainty. Other sources of uncertainty such as our limited knowledge of \(\Gamma_d \), \(\Delta m_d \), and other fixed parameters, the interaction region, the detector alignment, and effects due to a nonzero \(\Delta \Gamma_d \) value in the time dependence and the normalization of the PDF, are also considered. Treating \(c \bar{c} K^0 \) and \(J/\psi K^0 \) as orthogonal states and neglecting \(CP \) violation for flavor categories without leptons, has an impact well below the statistical uncertainty. The total systematic uncertainties are shown in Table I [23].

The significance of the \(T \)-violating signal is evaluated based on the change in log-likelihood with respect to the maximum \(-2 \Delta \ln \mathcal{L} \). We reduce \(-2 \Delta \ln \mathcal{L} \) by a factor \(1 + \max(m^2_{it}) = 1.61 \) to account for systematic errors in the evaluation of the significance. Here, \(m^2_{it} = -2(\ln \mathcal{L}_i - \ln \mathcal{L}_0)/\Delta^2 \), where \(\ln \mathcal{L} \) is the maximum log-likelihood, \(\ln \mathcal{L}_i \) is the log-likelihood with asymmetry parameter \(i \) fixed to its total systematic variation and maximized over all other

\[\begin{array}{|c|c|}
\hline
\text{Parameter} & \text{Result} \\
\hline \Delta S_T^- & -1.37 \pm 0.14 \pm 0.06 \\
\Delta S_T^0 & 1.17 \pm 0.18 \pm 0.11 \\
\Delta C_T^- & 0.10 \pm 0.14 \pm 0.08 \\
\Delta C_T^0 & 0.04 \pm 0.14 \pm 0.08 \\
\Delta S_{CP}^- & -1.30 \pm 0.11 \pm 0.07 \\
\Delta S_{CP}^0 & 1.33 \pm 0.12 \pm 0.06 \\
\Delta C_{CP}^- & 0.07 \pm 0.09 \pm 0.03 \\
\Delta C_{CP}^0 & 0.08 \pm 0.10 \pm 0.04 \\
\Delta S_{CP}^- & 0.01 \pm 0.21 \pm 0.09 \\
\Delta S_{CP}^0 & -0.03 \pm 0.13 \pm 0.06 \\
\Delta C_{CP}^- & 0.14 \pm 0.15 \pm 0.07 \\
\Delta C_{CP}^0 & 0.03 \pm 0.12 \pm 0.08 \\
S_{C, K^0}^- & 0.55 \pm 0.09 \pm 0.06 \\
S_{C, K^0}^0 & -0.66 \pm 0.06 \pm 0.04 \\
C_{C, K^0}^- & 0.01 \pm 0.07 \pm 0.05 \\
C_{C, K^0}^0 & -0.05 \pm 0.06 \pm 0.03 \\
\hline
\end{array} \]
parameters, and $s^2 = 1$ is the change in $2 \ln L$ at 68% confidence level (CL) for one degree of freedom (d.o.f.). Figure 3 shows CL contours calculated from the change $-2 \Delta \ln L$ in two dimensions for the T-asymmetry parameters $(\Delta S_{T}^{+}, \Delta C_{T}^{+})$ and $(\Delta S_{T}^{-}, \Delta C_{T}^{-})$. The difference in the value of $2 \ln L$ at the best fit solution curves and without T violation is 226 with 8 d.o.f., including systematic uncertainties. Assuming Gaussian errors, this corresponds to a significance equivalent to 14 standard deviations (s), and thus constitutes direct observation of T violation. The significance of CP and CPT violation is determined analogously, obtaining 307 and 5, respectively, equivalent to 17σ and 0.3σ, consistent with CP violation and CPT invariance.

In summary, we have measured T-violating parameters in the time evolution of neutral B mesons, by comparing the probabilities of $B^0 \rightarrow B^0$, $B^0 \rightarrow B^-$, and $B^- \rightarrow B^0$ transitions, to their T conjugate. We determine for the main T-violating parameters $\Delta S_{T}^{+} = -1.37 \pm 0.14\text{(stat)} \pm 0.06\text{(syst)}$ and $\Delta S_{T}^{-} = 1.17 \pm 0.18\text{(stat)} \pm 0.11\text{(syst)}$, and observe directly for the first time a departure from T invariance in the B meson system, with a significance equivalent to 14σ. Our results are consistent with current CP-violating measurements obtained invoking CPT invariance. They constitute the first observation of T violation in any system through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG(Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A.P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel).

*Deceased.
†Present address: the University of Tabuk, Tabuk 71491, Saudi Arabia.
‡Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
§Present address: the University of Huddersfield, Huddersfield HD1 3DH, U.K.
¶Present address: University of South Alabama, Mobile, AL 36688, USA.
‖Also with Università di Sassari, Sassari, Italy.

[22] See “CP violation in meson decays” review in [8].