Synergy of Caspofungin with Human Polymorphonuclear Granulocytes for Killing Candida albicans

Vivian Tullio,1* Narcisa Mandras,1 Daniela Scalas,1 Valeria Allizond,1 Giuliana Banche,1 Janira Roana,1 Deborah Greco,1 Franco Castagno,2 Anna Maria Cuffini,1 and Nicola A. Carlone1

Department of Public Health and Microbiology, University of Turin, Turin, Italy,1 and Blood Center, A.S.O. San Giovanni Battista, Turin, Italy2

Received 16 December 2009/Returned for modification 29 January 2010/Accepted 19 June 2010

The influence of caspofungin on polymorphonuclear leukocyte (PMN) phagocytosis and intracellular killing of Candida albicans was investigated. Caspofungin, at all of the concentrations tested (2, 3.2, and 8 μg/ml), significantly increased intracellular killing by PMNs through its direct action on both yeast cells and PMNs, indicating the potential ability of caspofungin to synergize with phagocytes for candidal killing. Caspofungin may therefore constitute an effective therapeutic option for the treatment of invasive fungal infections, including those refractory to conventional treatment with azole agents.

Echinocandins, such as caspofungin, are new drugs that broaden the available therapeutic arsenal for invasive fungal infection (IFI) treatment (6, 7, 11). Caspofungin displays favorable pharmacodynamic and pharmacokinetic characteristics and has an excellent toxico logical profile and antifungal activity against Candida spp., Aspergillus spp., Histoplasma spp., Blastomyces spp., and Coccidioides spp. (3, 7, 11, 12, 15).

As the current trend in therapy requires drugs with high spp., Caspofungin displays favorable pharmacodynamic and pharmacokinetic characteristics and may therefore constitute an effective therapeutic option for the treatment of invasive fungal infections, including those refractory to conventional treatment with azole agents.

TABLE 1. Effect of caspofungin on intracellular killing of C. albicans by human PMNs

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Mean SI ± SEM (% of initial fungal population killed by PMNs in absence or presence of caspofungin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Control: 1.54 ± 0.03 (46)</td>
</tr>
<tr>
<td></td>
<td>2 μg/ml (MIC): 1.29 ± 0.07 (71)b</td>
</tr>
<tr>
<td></td>
<td>3.2 μg/ml: 1.28 ± 0.09 (72)b</td>
</tr>
<tr>
<td></td>
<td>8 μg/ml: 1.26 ± 0.07 (74)b</td>
</tr>
<tr>
<td>60</td>
<td>Control: 1.53 ± 0.02 (47)</td>
</tr>
<tr>
<td></td>
<td>2 μg/ml (MIC): 1.28 ± 0.11 (72)b</td>
</tr>
<tr>
<td></td>
<td>3.2 μg/ml: 1.25 ± 0.09 (75)b</td>
</tr>
<tr>
<td></td>
<td>8 μg/ml: 1.17 ± 0.06 (83)b</td>
</tr>
<tr>
<td>90</td>
<td>Control: 1.52 ± 0.03 (48)</td>
</tr>
<tr>
<td></td>
<td>2 μg/ml (MIC): 1.25 ± 0.07 (75)b</td>
</tr>
<tr>
<td></td>
<td>3.2 μg/ml: 1.14 ± 0.04 (86)b</td>
</tr>
<tr>
<td></td>
<td>8 μg/ml: 1.17 ± 0.11 (83)b</td>
</tr>
</tbody>
</table>

a Concentration within the range achieved clinically.

b Significantly different from the control (P < 0.01).

c Corresponding author. Mailing address: Department of Public Health and Microbiology, Microbiology Section, University of Turin, Via Santena 9, 10126 Turin, Italy. Phone: 39/0116705637. Fax: 39/0112365637. E-mail: vivian.tullio@unito.it. 

Published ahead of print on 28 June 2010.
was expressed as counts per minute (cpm) per sample. The percentage of phagocytosis at a given sampling time was calculated as follows: % phagocytosis = [(cpm in PMN pellet)/(cpm in total fungal pellet)]×100 (18, 19). Intracellular killing was investigated by incubating yeast cells and PMNs (1:1 ratio) for 30 min to allow phagocytosis to proceed. The PMN-yeast cell mixtures were centrifuged at 200 × g for 5 min and washed to remove extracellular blastoconidia. An aliquot of PMNs was lysed by adding sterile water, and intracellular viable yeast cell counting was performed (time zero). PMNs were incubated further with 2, 3.2, or 8 μg/ml caspofungin, and at time x (30, 60, and 90 min), the viable counts were measured in the same way. Killing values were expressed as a survival index (SI), which was calculated by adding the number of surviving yeast cells at time zero to the number of survivors at time x and dividing by the number of survivors at time zero. According to this formula, if fungal killing was 100% effective, the SI would be 1 (18, 19). To differentiate between any separate effect of caspofungin on the yeast cells and PMNs, the experiments were conducted after the exposure of each of them to 2, 3.2, or 8 μg/ml caspofungin for 1 h, before they were incubated together (16, 17). After the withdrawal of caspofungin, preexposed blastoconidia were added to PMNs and blastoconidia were added to preexposed PMNs. Drug-free controls were included. Intracellular killing was determined as described above. Results were expressed as the mean ± the standard error of the mean (SEM) of 10 separate experiments, each performed in quadruplicate. Statistical evaluation of the differences between test and control results was performed by Tukey’s test.

The majority of systemic antifungal drugs do not significantly influence the phagocytic activity of PMNs against Candida spp. (8, 13, 14). We reported that fluconazole enhances the in vitro killing activity of phagocytes against C. albicans, without improving phagocytosis (18, 19). We observed a similar pattern for caspofungin (data not shown), probably owing to the altered expression of surface molecules that link to cleavage products of complement (13). On the contrary, under the same experimental conditions, caspofungin showed a marked effect on the survival of blastoconidia, with SI values that ranged from 1.25 to 1.29, 1.14 to 1.28, and 1.17 to 1.26 for the three drug concentrations tested, compared with those for the caspofungin-free controls (P < 0.01; Table 1).

To determine whether the increased killing activity of caspofungin was due to its direct action on C. albicans or its action on phagocytes, yeast cells and PMNs were separately exposed to 2, 3.2, or 8 μg/ml caspofungin for 1 h prior to killing tests. Yeast cells pretreated with caspofungin at the MIC were killed more efficiently by the PMNs than were untreated yeast cells: SI = 1.31, 1.31, and 1.18 versus 1.54, 1.53, and 1.52 (P < 0.01; Table 2). Yeast killing was stimulated to about the same degree (3.2 μg/ml) or to a slightly lower degree (8 μg/ml) than that observed with caspofungin at the MIC but significantly more than that seen in the controls (P < 0.01; Table 2). This finding could be correlated with caspofungin’s ability to unmask a virulence factor in the inner β-glucan cell wall layer, making intracellular yeast cells more susceptible to PMN lytic mechanisms (10, 21).

Pretreatment of PMNs with caspofungin at the MIC resulted in a significant enhancement of intracellular killing throughout the observation period compared with that in controls (SI = 1.28, 1.24, and 1.18 versus 1.54, 1.53, and 1.52; P < 0.01; Table 2). Similarly, PMNs pretreated with caspofungin at supramICs (3.2 and 8 μg/ml) were highly effective in clearing viable blastoconidia, compared with controls (SI = 1.31, 1.16, and 1.09 and 1.21, 1.18, and 1.06, respectively; P < 0.01; Table 2), thus providing indirect evidence of the drug’s ability to enter phagocytes and remain available in a form that is biologically active against proliferating yeast cells. Our results differ somewhat from those obtained by van Asbeck et al. with C. parapsilosis, showing impairment of the innate immune mechanisms; however, these data are difficult to compare because of the differences in the experimental designs and methods used (20).

In conclusion, our findings suggest that caspofungin, at the MIC and at concentrations that are achieved clinically during antifungal therapy, displays a positive interaction with PMNs through its direct action on both yeast cells and PMNs. Caspofungin may therefore constitute an effective therapeutic option for the treatment of IFIs, including those refractory to conventional treatment with azole agents.

This work was supported by grants from the Italian MUR (2008) and from Piedmont Region, Ricerca Scientifica Finalizzata 2008 bis.

We thank Eugene Y. Cheung for helpful English revision of the manuscript.

REFERENCES


