Buffer strip effect on terbuthylazine, desethyl-terbuthylazine and S-metolachlor runoff from maize fields in Northern Italy

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/99831 since

Published version:
DOI:10.1080/09593330.2012.680919

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
Buffer strip effect on terbuthylazine, desethyl-terbuthylazine and S-metolachlor runoff from maize fields in Northern Italy

MARCO MILAN*, FRANCESCO VIDOTTO*, SERENELLA PIANO*, MICHELE NEGRE**, ALDO FERRURO*

*Dipartimento di Agronomia, Selvicoltura e Gestione del Territorio, Università di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy.

**Dipartimento di Valorizzazione e Protezione delle Risorse Agricole e Forestali, Università di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy.

Correspondence: Marco Milan, Dipartimento di Agronomia, Selvicoltura e Gestione del Territorio, Università di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy. Tel: (+39) 0116705548; Fax: (+39) 0116708798; E-mail: marco.milan@unito.it
Abstract

The effectiveness of a 6m-wide vegetative buffer strip for reducing runoff of S-metolachlor, terbuthylazine and desethyl-terbuthylazine was studied in 2007-2008 in Northern Italy. Two cultivated fields, with and without the buffer strip, were compared. Residues of the chemicals were investigated in runoff water collected after runoff events and their dissipation in the soil was studied. The highest concentration of the chemicals in water occurred in samples collected from the unbuffered field at the first runoff events. Losses of terbuthylazine and S-metolachlor in runoff waters were particularly high in 2007 (2.6% and 0.9% of the amount applied, respectively). Soil half-life of terbuthylazine and S-metolachlor ranged between 13.5 and 8.9 days and 16 and 7 days, respectively. Presence of desethyl-terbuthylazine was related to parent compound degradation. The buffer strip allowed important reduction of chemicals content in water (>90%), in particular during the first runoff events.

Keywords: runoff, buffer strip, terbuthylazine, desethyl-terbuthylazine, S-metolachlor, herbicide

1. Introduction

Both surface and ground water can be contaminated by agrochemicals used to protect crops from pests and diseases [1]; [2]; [3]; [4]; [5]; [6]. Prevention, or at least mitigation, of herbicidal runoff water contamination is a major environmental challenge facing both Italy and Europe. In fact, the European Water Framework Directive (2000/60EC) established severe limits on the pesticide levels that could be found in environmental and drinking waters. Individual compounds and the total across all pesticides were set to a maximum of 0.10 µg/L and 0.50 µg/L, respectively. Now, the introduction of the Directive on sustainable use of pesticides (2009/128/EC) will require that European Member States do more efforts to reduce water pollution associated with drift, runoff, and leaching of Plant Protection Products (PPPs). Vegetative buffer strips (VBSs), the subject of the study described here, are one defense that may be helpful in efforts to curb the deleterious effects of runoff and its consequent water contamination.

Runoff, the flow of water, sediments, organic materials, and chemicals over the soil surface, is one of the main ways through which agrochemicals may reach surface waters [7]. The magnitude of this phenomenon is highly related to several factors: the amount of rainfall occurring after pesticide application, pesticide characteristics, and soil slope and texture [8]; [9]; [10]; [11]. Runoff events that occur shortly after to herbicide application account for the largest losses [12]; [13]; [7]; [9]; [14]; [15]; [6]. Notwithstanding severe rainfall shortly after application, total herbicide losses are small—generally, less than 0.5% of the amount applied for most herbicides [16].
Vegetative buffer strips (VBSs) are the major tool to prevent runoff from entering the water stream and/or carrying away sediments, organic materials, nutrients, and chemicals \([17]; [18]; [19]; [20]; [21]; [22]\). VBSs are usually set up along creeks, streams, ponds, or lakes to prevent water pollution of their waters \([19]; [23]; [24]; [25]\). VBS efficacy is generally expressed as a percent reduction in PPP concentration as compared to a non-buffered control. According to the literature, VBS effectiveness is generally above 50\% \([26]; [20]; [11]\). Typically, runoff volume retention (intended as infiltration), have averaged 45\% (with ranges between 0 and 100\%) across different studies under both natural and simulated experimental conditions \([27]\).

Many and diverse factors have been shown to influence the success of VBSs. The primary determinant of VBS efficacy is its design. The minimum VBS width that will yield an acceptable level of effectiveness must be dimensioned relative to slope steepness and correlated to its primary function (to reduce sediment transport or increase infiltration). The USDA recommends buffer strip widths of at least 6 m for sediment and strongly adsorbed PPPs. Similarly, the same agency recommends at least 30 m for dissolved compounds—nitrate as well as weakly and moderately adsorbed PPPs. Since several species can be profitably seeded in a buffer strip, multi-species VBSs are preferable to those composed of a single-species because a combination of plant species generally results in stronger mitigation capacity \([28]\).

Secondary to design, but not without consequence, are numerous other factors affecting VBS effectiveness. The surrounding cropland characteristics and environmental conditions play roles: slope, micro-topography, soil type, rainfall intensity, infiltration capacity, strip width, and irrigation volume \([29]; [30]; [14]; [31]\). Pesticide characteristics (solubility, Koc, and persistence) as well as soil texture, organic content, and crop and tillage management also show great influence \([27]; [30]; [31]\). Finally, VBS filtration activity can vary with the specific PPPs used, the sediment amount carried by runoff water into the strip, the water retention time in the VBS, the soil infiltration rate, the uniformity of water flow through the VBS, and maintenance of the strip itself \([29]; [25]\).

Although many studies on buffer strips have been conducted, there is a need for more research in this field. Most of the studies have been conducted at the field scale but on small plots and the behavior of metabolites has not been investigated. The objective of this experiment was to determine the effectiveness of 6 m wide VBSs for reducing off-site movement by runoff of two herbicides (S-metolachlor and terbuthylazine and one metabolite, desethyl-terbuthylazine) from maize fields. Terbuthylazine and S-metolachlor are selective herbicides widely applied to maize for the control of broadleaved weed and grasses, respectively. These two herbicides, together with desethyl-terbuthylazine, the main metabolite of terbuthylazine, are among the most frequently found chemicals in surface and ground water \([2]; [3]; [4]\). Losses by runoff of terbuthylazine, S-
metolachlor and desethyl-terbuthylazine were measured during the growing seasons and their dissipation in the soil was studied. Buffer strips are considered useful mitigation measure of pesticide and sediment runoff in various environmental conditions. Better understanding the efficacy of buffer strips in reducing pesticide runoff at a field-scale level may facilitate the adoption of appropriate runoff mitigation measures by regional or national authorities.

2. Materials and methods

2.1. Experimental design

The study was carried out at the experimental station of the Dipartimento di Agronomia, Selvicoltura e Gestione del Territorio of University of Turin, Italy. The experimental station is located in the Po Valley in northwest Italy (44° 53’ 08.99” N, 7° 41’ 11.33” E; WGS84) in an area traditionally cultivated with maize.

The experimental site consisted of two large plots cultivated with maize, each approximately 1050 m² (150x7 m) with a 0.5% slope (Figure 1). The plots were characterized by sandy loam soil (68.77% sand, 26.79% silt, 4.45% clay), 0.9% organic matter, and a pH=7.63. One plot had an untreated 6 m-wide vegetated buffer strip at the downstream head (buffered field; BF) while the other plot had no buffer strip and was considered as the control (check field; CF). The buffer strip was cultivated with maize, and weeds were allowed to grow freely. Weeds grown in the buffer strip were representative of the common maize weeds of the North Italian area. They were mostly represented by *Echinochloa crus-galli* (L.) P. Beauv., *Panicum dichotomiflorum* Michx., *Chenopodium album* L., *Portulaca oleracea* L., *Galinsoga quadriradiata* Cav., and *Poa pratensis* L. Their density, expressed as percentage of soil coverage, ranged from 40% (ten days after the crop sowing) to 100% during the rest of the season. Hand mowing was conducted as needed.

The measurements were carried out on the same plots during the 2007 and 2008 growing seasons, which are regarded as temporal replications.

2.2 Chemicals studied

Both plots, save the buffer strip, were treated with terbuthylazine (6-chloro-N-(1,1-dimethylethyl)-N’-ethyl-1,3,5-triazine-2,4-diamine) and S-metolachlor (aRS,1S)-2-chloro-6’-ethyl-N-(2-methoxy-1-methylethyl)acet-o-toluidide) at 843 g a.s. ha⁻¹ and 1400 g a.s. ha⁻¹, respectively by spray application of 4.5 L ha⁻¹ of the herbicide Primagram Gold® (Syngenta) using a conventional rear-mounted boom sprayer adjusted to deliver 400 L ha⁻¹ of herbicide mixture. To avoid product deposition from spray drift, the buffer strip was covered with a plastic film during herbicide application. Physical-chemical properties of the studied substances are presented in Table 1.

2.3 Agronomic practices
In both experimental plots maize was cultivated according to local agronomic practices. Crop sowing was carried out the 8 of April and 1 of April in 2007 and 2008, respectively. Total rainfall measured during the growing season was 360 mm and 580 mm in 2007 and 2008, respectively. Weather data were collected daily from the meteorological station located near the experimental fields. Herbicides were applied in pre-emergence, within two days after sowing.

Over the two seasons, water was supplied as needed to the crop by a furrow irrigation system with the exception of the second and the third 2007 irrigations, which were performed by a traveling-gun sprinkler irrigation system. In 2007 the three irrigations were realized at July 10, July 24 and August 8, respectively. In 2008 field were irrigated only two times at July 24 and August 7.

2.4 Soil sampling

Soil samples were collected using a stainless shovel in different positions of each treated area immediately after spraying (to assess initial herbicide concentration, t_0) and at 1, 4, 28, 51 and 177 days after treatment (DAT) in 2007 and at 1, 4, 14, 28 and 47 DAT in 2008. The samples were taken in the upper 5 cm of soil, with a 50 mm diameter soil core sampler. At each sampling time, three bulk samples made, by 10 cores each, were randomly collected in both treated areas. After collection, soil samples were stored at -20°C until chemical analysis.

2.5 Water sampling

Samples of runoff water were collected after each irrigation and rainfall (able to produce runoff). Water samples were collected at 23, 60, 90 and 120 DAT in 2007 and at 9, 67, 74, 94, 112 and 127 DAT in 2008. A total of six samples (considered as replications) were collected after each runoff event, three from the CF field and three from the BF field. The runoff flow from the plots was measured using a triangular weir, placed on the downhill border of the field, with a notch angle of 28°, created according to the ISO rules (1433/1). The weirs were connected to automatic samplers adjusted to collect, at each runoff event, a bulk sample made by 500 mL sub-samples gathered at 10-min intervals for the duration of the event. The end bulk samples had volumes ranging from 5 L to 25 L, in relation to runoff event duration and intensity. Within about two hours from the end of each event, three 0.5 L subsamples were derived from the bulk sample and stored at -20°C until analysis.

2.6 Herbicide extraction and analysis

2.6.1 Soil

The extraction of herbicides from the soil was performed on 25 g samples. The samples were previously mixed with 10 g kieselguhr (Extrelut NT, Merck, Darmstadt, Germany), then added to 100 mL of a cycloexane/ethyl acetate (Sigma Aldrich, Steinheim, Germany) solution (90:10:V/V). Thereafter, the solution was mechanically agitated for thirty minutes. The liquid phase was
separated by filtration on anidrous sodium sulfate. The extraction was repeated twice using 75 and 50 mL, respectively, of extraction solution and then shaking for 15 minutes. The filtrates obtained from the three extractions were concentrated and dried in a rotary evaporator, then re-dissolved in 5 mL of acetonitrile.

2.6.2 Water

Herbicide extraction from water samples was carried out using solid phase extraction (SPE) cartridges. The cartridges (SupelcoSil LC-18, 6 ml, 0.5 g C18 sorbent material) were previously activated with 6 ml of acetonitrile (Sigma Aldrich, Steinheim, Germany) and then washed with 6 ml of distilled water. The entire volume (0.5 L) of the water sample flowed through the cartridges under vacuum. The cartridges were let to dry. The adsorbed herbicides were eluted with acetonitrile until a final volume of 5 mL was reached.

2.6.3 HPLC analysis

Analysis was performed by HPLC using a Spectraphysics P2000 equipped with a C18 Supelcosil™ LC-ABZ column (15 cm x 4.6 mm i.d., 5 µm particle sizes), a UV detector at 215 nm, a mobile phase H2O pH 3/CH3CN 44/56, with the flow rate set to 1 mL min⁻¹. Analytical-grade S-metolachlor, terbuthylazine and desethyl-terbuthylazine, supplied by Sigma Aldrich, Germany, were used as analytical standards. Retention times were 8.19 min, 3.72 min and 12.0 min, for terbuthylazine, desethyl-terbuthylazine and S-metolachlor, respectively.

2.6.4 Recovery and detection limits

The mean recoveries of terbuthylazine, desethyl-terbuthylazine and S-metolachlor in water were 98%, 86% and 87% respectively. The mean recoveries in soil were 70%, 85%, and 82 % for terbuthylazine, desethyl-terbuthylazine and S-metolachlor, respectively. The detection limits achieved in water samples were 0.08 µg L⁻¹ for terbuthylazine and S-metolachlor, and 0.05 µg L⁻¹ for desethyl-terbuthylazine. The detection limits achieved in soil were 5 µg kg⁻¹ for terbuthylazine and S-metolachlor, and 2.80 µg kg⁻¹ for desethyl-terbuthylazine.

2.7 Statistical analysis

A Tuckey range test (α=0.05) was employed to determine the statistical significance of differences among the concentrations observed in the waters collected from the check field and the buffered field at the different sampling time. The values presented are the mean of three data. SPSS, version 17.00, (SPSS, IBM Corporation, 2008), was used for the statistical analysis.

3. Results and discussion

3.1 Herbicide dissipation in the soil of treated areas

The concentration of terbuthylazine and S-metolachlor in the top 5 cm soil layer showed a rapid decay (Figure 2 and Figure 3) in each year. In general, the observed rapid degradation can be
attributed to the sampling procedure adopted in this study, in which only the superficial (5cm) soil layer was sampled. However, the more rapid dissipation of the studied herbicides observed in 2008, may also be due to the rainfall occurred in the last decades of April. The reduced intensity of the rainfall just in one case produced a significant runoff (9 days after herbicide application), nevertheless they promoted the movement of the studied molecule trough the soil profile.

We found soil half-lives for S-metolachlor to be short with a range between 16 (2007) and 7 days (2008). Our results agree with those of Youbin et al. [32], who reported that metolachlor degradation was faster near the soil surface and that it increased as soil depth increased. Accinelli et al. [33] too, found degradation to be faster in the upper (0-20 cm) soil depth compared to the sub-surface layer. Other authors have reported longer field half-lives for metolachlor [33]; [34]; [35];[36], but their work referred to loamy soils in which a relevant amount of applied herbicide is likely retained by the soil matrix. In consideration of the light soil texture at the experimental site, we expected not only a lower persistence of S-metolachlor, but also a higher mobility of the molecule throughout the soil profile.

Over the course of our two year study, the terbuthylazine-treated soil half-life values ranged from 12.1 (2007) to 8.9 days (2008). Terbuthylazine soil half-life ranges between 5 and 114 days according to soil depth [37], soil characteristics, and soil temperatures [38]; [39];[40].

The higher rate of dissipation of this compound throughout sandy soil compared to clay soils is well known. The soil matrix adsorbs only part of the molecule [41] resulting in a reduced degradation [37]. Furthermore, terbuthylazine degradation appears to be more rapid in topsoil [37]. Despite volatilization and photodegradation may reduce herbicide concentration in top soil [42], rainfall can cause herbicides to move through the soil so much so that microbial degradation starts to be the dominant factor in herbicide dissipation [9].

Despite several studies investigated the presence of desethyl-terbuthylazine in water environment, less information are available on its behaviour into the soil. The soil half-life of triazine metabolites are reported to be much higher than those of their parent compounds [43]. Nevertheless, compared to the terbuthylazine, desethyl-terbuthylazine is more water soluble and less adsorbed to soil matrix. These characteristics may have a great influence on the dissipation dynamics of this chemical, particularly in permeable soils. In the present study, the desethyl-terbuthylazine formation was quite rapid and varied greatly between the two years.

During the first year of the study (2007), desethyl-terbuthylazine concentration in soil reached the maximum value at 28 DAT (176.31µg kg⁻¹). However, even at 51 DAT its concentration was about 21 µg kg⁻¹; six months after herbicide application it was less than 4 µg kg⁻¹. During 2008, desethyl-terbuthylazine formation in the soil quickened and its peak value was registered 4 DAT (218.47 µg
Compared to the previous year, desethyl-terbuthylazine formation resulted more rapid. It is important to note that in 2008 the first week after treatment was characterized by several light rains which may have accelerated its formation. At 14 DAT the concentration of desethyl-terbuthylazine was attested at 41.78 µg kg⁻¹ while at its final sampling (47 DAT), it was no more than 5 µg kg⁻¹.

3.2 Dissolved herbicides in runoff water

Residues of the three studied substances were detected in the water flushed in the sampling system of each experimental plot after runoff events that were due to rainfall or irrigation. The sampling was carried out on the same plots in 2007 and 2008 which are regarded as temporal replications. The outflows produced after every rainfall or irrigation able to produce runoff were accurately measured (Table 2). In our investigation, we found concentrations of terbuthylazine, desethyl-terbuthylazine, and S-metolachlor in runoff waters to be related to the time elapsed between herbicide application and runoff events. The highest values during the seasons were observed in water samples collected from CF.

In 2007 the first instance occurred 23 days after herbicide application (DAT); concentrations of terbuthylazine, desethyl-terbuthylazine, and S-metolachlor in the water flow from BF were 95% lower than those detected from CF. Several studies have similarly reported that major losses result when rainfall occurs close to herbicide application [13]; [7]; [15]. The second important runoff event occurred at 60 DAT. In this instance, large concentrations of terbuthylazine and desethyl-terbuthylazine (13.5 µg L⁻¹ and 15.9 µg L⁻¹, respectively) were found in runoff water collected from CF while S-metolachlor was not detected in either plots. In comparison to the previous event, the resulting concentrations were about one order of magnitude lower, and no runoff was recorded from the BF (Table 2).

Several irrigation events followed these rainfalls. Furrow irrigation, at 90 DAT, caused water runoff in both fields. Measurements indicated terbuthylazine and desethyl-terbuthylazine concentrations in BF runoff were about 9 and 3 times lower, respectively, than those detected in CF. The following two runoff events were due to irrigations performed by a traveling-gun sprinkler irrigation system. The second irrigation occurred at 104 DAT, but no runoff resulted. The third irrigation, at 120 DAT, led to runoff in CF only. In this cases, the observed runoff volumes were far lower than those usually expected, which was most likely related to the higher amount of water infiltrated with a sprinkler versus furrow irrigation system. However, approximately 8 hours after irrigation, a severe storm caused an important runoff in both plots. Terbuthylazine and desethyl-terbuthylazine concentrations increased noticeably compared to previous runoff measurements. We postulate that the just-previous irrigation had already raised the water content of the soil. Then, when the storm
came, conditions favored runoff and allowed transport of the herbicide fraction adsorbed on the sediment [44]; [45].

In 2008, the first runoff event was registered after an important rainfall at 9 DAT, but a resulting outflow was recorded only from CF (Table 2). While this runoff event occurred closer to herbicide application (9 DAT) than did the first event in 2007 (23 DAT), resulting chemical concentrations detected in the runoff samples were lower than those detected in 2007. The rainfall occurred in the first days after herbicide application may have stimulated herbicides dissipation as well as the movement of the compounds in the deep layers of the soil. Effectively, in 2008, peak of desethyl-terbuthylazine in soil, was reached at 4 DAT, while in 2007 peak value of desethyl-terbuthylazine was registered at 28 DAT, few days after the first event of runoff. The second important runoff event, also due to a rainfall, occurred at 67 DAT. Concentrations of the studied chemicals decreased relative to the previous rainfall and were measured at 2.1 µg L$^{-1}$ for terbuthylazine, 0.9 µg L$^{-1}$ for desethyl-terbuthylazine, and 0.6 µg L$^{-1}$ for S-metolachlor. These concentrations appear to be much smaller respect to those observed during the runoff event occurred in 2007, at a similar time from herbicide application (60 DAT). The reason is attributable to the particularly rainy spring registered, which probably has facilitated the movement of the chemicals deep into the soil. The next two runoff events occurred at 74 DAT and 94 DAT; both were rainfall related. In these runoff events, S-metolachlor concentrations, regardless of field, were always below the determination limit while terbuthylazine and desethyl-terbuthylazine continued to be found in water flows from both fields. In any case, concentrations of the two chemicals observed in outflows from BF were, generally, lower than those found in water from CF.

Furrow irrigation at 112 DAT produced a significant runoff. Terbuthylazine and desethyl-terbuthylazine were found in concentration above the detection limits only in outflows from CF. Two weeks later (127 DAT), in the water samples collected after the second irrigation, desethyl-terbuthylazine was detected in water sample from CF and BF field at similar concentrations, while no more terbuthylazine was found (Table 2). In both years, desethyl-terbuthylazine was present in concentration above the detection limit until the latest sampling; either in runoff waters from CF plot that BF plot. The presence of the metabolite in the water that crossed the buffer strip suggests there may have been transport from the treated area or degradation of the parent compound transported through the buffer strip during an earlier runoff event. However, desethyl-terbuthylazine seems show a potential longer risk of water contamination.

3.3 Efficiency of the vegetative buffer strip

The ratio of field area to strip area in buffered plot was 25:1. Other studies were conducted with higher ratios by other authors [46]; [47]. A higher field/filter ratio may reduce the efficacy of buffer
strip particularly in case of accentuated slope. However, as reported in section 2.1, our experimental fields have a limited slope.

In Table 3 are reported the runoff events, the water volumes applied during irrigations and the corresponding measured runoff volumes in 2007 and 2008. In general, higher runoff volumes were observed in CF indicating that the buffer strip successfully reduced runoff volumes. Nevertheless, as shown in Table 3, in some cases runoff volume measured in buffered plots were higher than in the control plot. Operating on a field scale, a modification of soil roughness, perhaps for a weed spots, may affect the outflow behavior along the field.

Buffer strips reduce runoff volumes by slowing water speed, which in turn, promotes water infiltration into the soil [18]; [48]; [49]. As observed in the two years, the different cover offered by spontaneous vegetation during the season may affect buffer strip efficiency.

Terbuthylazine and S–metolachlor are transported both in water phase than in the solid phase, adsorbed to eroded soil particles [50]. Nevertheless, the soil texture of the plots in this study we quantify the amount of terbuthylazine and S-metolachlor dissolved in the runoff water lost during each growing season expressed as percentage of the total amount applied. It was calculated by multiplying volume of runoff by mean concentration of dissolved herbicides (Runoff Volume [m3] x Concentration [µg L$^{-1}$]) determined in the samples at each event. Overall, the greatest losses were recorded following the first runoff event after herbicide application both in the check field and field with the buffer strip. Our results agree with those previously reported by other authors [13]; [7]; [15]; [6]. We found that for CF during 2007, 2.5% of total applied terbuthylazine and 0.80% of distributed S-metolachlor were lost to runoff during the growing season. It is important to note that in this season, 93% and 80% of the total losses of terbuthylazine and S-metolachlor, respectively, were recorded during the first runoff event (23 DAT). As Wauchope [50] suggests, this runoff event could be defined, in the case of terbuthylazine, as catastrophic since it produced runoff losses of 2% or more of the applied amount. By contrast, the buffered field lost only 0.014% of total applied terbuthylazine while no metolachlor losses were observed during the season. In 2008, CF had runoff losses of only 0.11% and 0.05% of terbuthylazine and S-metolachlor, respectively. Overall the season, total losses of the two compounds from BF were 0.006% for terbuthylazine, while no S-metolachlor losses were measured. These low values might be due to two facts the first 2008 runoff event (9 DAT) produced lower runoff outflows and the buffer strip was well covered by weeds.

4. Conclusions
The present experiment assessed the effect of a 6 m wide buffer strip on movement of two herbicides (terbuthylazine and S-metolachlor) and one metabolite (desethyl-terbuthylazine) by runoff. We found that the highest concentrations of chemicals were transported by outflows when
runoff events occurred close to herbicide application. These findings, as reported by other studies, confirmed that terbuthylazine, desethyl-terbuthylazine, and S-metolachlor are easily transported through runoff water. The presence of a buffer strip allowed important reduction (>90%) of chemicals content in water, in particular during the first runoff events.

Terbuthylazine and S-metolachlor total losses in dissolved water phase were particularly high in 2007, as much as 2.6% and 0.9% of the amount applied, respectively. Desethyl-terbuthylazine was detected in runoff waters at higher amount in the first runoff events and in general, it resulted detected in runoff waters longer than the other two chemicals. The risk of surface water contamination by S-metolachlor is highest early after herbicide application. Its high water solubility favors its presence throughout the soil profile, but it makes it easily transportable by runoff into surface waters early after its application. For the studied herbicides, rainfall close to the time of herbicide application (within 14 days) may cause a significant transfer of compounds via runoff.

Degradation of molecules in the study was fast, particularly in 2008. This is probably because of the shallow depth of sampling, the characteristics of the soil particle size and to the rainy spring in 2008. Despite several studies investigated the presence of desethyl-terbuthylazine in water environment, less information are available on its behaviour into the soil. Fate of desethyl-terbuthylazine in soil was strictly related to parent compound degradation and it was influenced by occurrence of rainfall events.

The present study demonstrated that even in sandy loam soils, transfers of S-metolachlor, terbuthylazine and desethyl-terbuthylazine with runoff waters may occur. Although herbicides with high mobility and low Kd were more vulnerable to leaching, they certainly can be easily transported by runoff during the first weeks after herbicide distribution.

These results also showed that on plain fields, 6 m buffer strips can play an important role in the reduction of water body contamination for the herbicides studied here, in particular. Even if buffer strip did not completely stop the runoff transport, the concentratons of the chemicals studied in runoff waters were greatly reduced, particularly at the first runoff events when the amounts transported are high. This can significantly contribute to the reduction of water outflow and to total herbicides transported.

In conclusion, buffer strips could be considered as useful mitigation measure of pesticide runoff and its adoption should be supported by national authorities.

Acknowledgements

This study was financially supported by the Agricultural Department of the Regione Piemonte, Italy. The authors thank experimental station technicians for their valuable contributions in the field operations. Appreciation is further extended to the members of the group in Sustainable Weed
Management of the Department of Agronomy, Forest and Land Management of the University of Turin, which helped the authors during the study.

References

 http://dx.doi.org/10.1007/s003740100358.
 http://dx.doi.org/10.1021/jf991057b.
 http://dx.doi.org/10.1002/(SICI)1096-9063(199701)49:1<9::AID-PS472>3.0.CO;2-F.
 http://dx.doi.org/10.1007/BF00198492.
 http://dx.doi.org/10.1016/S0045-6535(00)00548-8.
 http://dx.doi.org/10.1016/S0048-9697(96)05406-X.
 http://dx.doi.org/10.1016/0045-6535(96)00049-5.
 http://dx.doi.org/10.1051/agro:2004010.
http://dx.doi.org/10.1111/j.1475-2743.2007.00097.x.

Figure 1: Experimental layout adopted. A: weirs and automatic samplers.
Figure 2: Terbuthylazine and desethyl-terbuthylazine concentrations (µg kg\(^{-1}\)) in soil of treated areas in 2007 (A) and 2008 (B). Arithmetic mean of three bulk replications ± SE.
Figure 3: S-metolachlor concentrations (µg kg^{-1}) in soil of treated areas in 2007 (A) and 2008 (B). Arithmetic mean of three bulk replications ± SE.
<table>
<thead>
<tr>
<th></th>
<th>Terbuthylazine</th>
<th>Desethyl-terbuthylazine</th>
<th>S-metolachlor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water solubility (mg L(^{-1}))</td>
<td>6.6</td>
<td>327.1</td>
<td>480</td>
</tr>
<tr>
<td>Koc (ml g(^{-1}))</td>
<td>231</td>
<td>121</td>
<td>226.1</td>
</tr>
<tr>
<td>DT50 in field (days)</td>
<td>22.4</td>
<td>28.6</td>
<td>21</td>
</tr>
<tr>
<td>GUS index</td>
<td>3.07</td>
<td>3.5</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Table 2: Concentration of terbuthylazine, desethyl-terbuthylazine, and S-metolachlor detected in water samples collected after each runoff event in 2007 and 2008. Values are expressed in µg L⁻¹. Arithmetic mean of three replications ± SE. Same-letter values are not significantly different (Tuckey’s range test; α=0.05).

<table>
<thead>
<tr>
<th>DAT</th>
<th>Check field (µg L⁻¹)</th>
<th>Field with buffer strip (µg L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TBA</td>
<td>DTA</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 (R)</td>
<td>136.2 (11.5) a</td>
</tr>
<tr>
<td></td>
<td>60 (R)</td>
<td>13.5 (1.5)</td>
</tr>
<tr>
<td></td>
<td>90 (I)</td>
<td>6.6 (0.2) a</td>
</tr>
<tr>
<td></td>
<td>120 (I)</td>
<td>0.9 (0.1)</td>
</tr>
<tr>
<td></td>
<td>120 R</td>
<td>3.1 (0.2)</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 (R)</td>
<td>40.6 (0.6)</td>
</tr>
<tr>
<td></td>
<td>67 (R)</td>
<td>2.1 (0.1)</td>
</tr>
<tr>
<td></td>
<td>74 (R)</td>
<td>1.2 (1.0) a</td>
</tr>
<tr>
<td></td>
<td>94 (R)</td>
<td>0.9 (0.1)</td>
</tr>
<tr>
<td></td>
<td>112 (I)</td>
<td>0.2 (0.5)</td>
</tr>
<tr>
<td></td>
<td>127 (I)</td>
<td>< LOD</td>
</tr>
</tbody>
</table>

Note 1: DAT (days after treatment); TBA (terbuthylazine); DTA (desethyl-terbuthylazine); MET (S-metolachlor); NR (no runoff; R (Rainfall); I (Irrigation); LOD=0.08 µg L⁻¹ for TBA and MET, 0.05 µg L⁻¹ for DTA; LOQ=0.23 µg L⁻¹ for TBA and MET, 0.14 µg L⁻¹ for DTA.
Table 3: Runoff events, water volumes applied during irrigations and corresponding measured runoff volumes in 2007 and 2008.

<table>
<thead>
<tr>
<th>DAT</th>
<th>Precipitation (mm)</th>
<th>Temperature °C</th>
<th>Irrigation volume (m³)</th>
<th>Runoff volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CF</td>
<td>BF</td>
<td>CF</td>
<td>BF</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 (R)</td>
<td>44.4</td>
<td>10.7</td>
<td></td>
<td>15.2</td>
</tr>
<tr>
<td>60 (R)</td>
<td>34.7</td>
<td>21.2</td>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td>90 (I)</td>
<td>-</td>
<td>17.8</td>
<td>51</td>
<td>1.5</td>
</tr>
<tr>
<td>104 (I)</td>
<td>-</td>
<td>22.9</td>
<td>48</td>
<td>NR</td>
</tr>
<tr>
<td>120 (I)</td>
<td>-</td>
<td>18.8</td>
<td>49</td>
<td>0.2</td>
</tr>
<tr>
<td>120 (R)</td>
<td>24.2</td>
<td>18.8</td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 (R)</td>
<td>12.6</td>
<td>10.6</td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>67 (R)</td>
<td>61.6</td>
<td>17.2</td>
<td></td>
<td>25.1</td>
</tr>
<tr>
<td>74 (R)</td>
<td>30.6</td>
<td>15.9</td>
<td></td>
<td>7.2</td>
</tr>
<tr>
<td>94 (R)</td>
<td>23.2</td>
<td>21.9</td>
<td></td>
<td>2.9</td>
</tr>
<tr>
<td>112 (I)</td>
<td>-</td>
<td>20.9</td>
<td>33</td>
<td>2.2</td>
</tr>
<tr>
<td>127 (I)</td>
<td>-</td>
<td>23.2</td>
<td>37</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Note 2: DAT (days after treatment); NR: no runoff; R: Rainfall; I: Irrigation